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Waves on the surface of an infinitely deep fluid, and also on the sur- 
face of a fluid of finite constant depth, have been investigated in many 
papers. In this connection Fourier transformations were used for the most 
part for the solution to the problem. 

We note that in [ 1 ] and [Z 1 a system of standing waves at beaches 
of one surface slope were investigated. In the work of Keldysh [ 3 1 a 
solution of the non-stationary problem for a beach with a slope angle of 
45O was obtained with the help of an integration with respect to s Para- 
meter of the solution of the standing wave problem and the construction 
of an inversion formula. 

In an analogous manner the linear problem of the unsteady motions of 
an incompressible fluid at a sloping beach is considered below. A simpler 
inversion formula is obtained with the help of the generalized Fourier 
transformations. As an example the problem of Cauchy-Poisson waves at a 
beach with a slope angle of 45O and also with a small slope in the 
shallow water approximation is examined. 

1. We will consider the planar case. Let the fluid be bounded by the 

free surface which coincides with the x-axis and by a rigid wall which 

makes an angle j3 with it. We will consider that the motion begins from a 

state of rest. Therefore, the velocity potnetial +(x, y, t), which satis- 

fies the equation 

in the region of flow, exists. 

On the free surface q!~ satisfies the equation 
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a’p 1 aev 1 afob 0; t) -- 
iGi=- g ata + Pg at for y=O 

817 

(1.2) 

where f. is a known 
on the surface as a 

no through flow 

function which describes the pressure distribution 
function of time. On the rigid wall the condition of 

acplan = 0 (1.3) 

must be satisfied, where n is the direction normal to the rigid wall. 

The function C#J can satisfy initial conditions 

Q (2. 0; 0) = ;- F (x), 
aQ (2. 0; 0) 

at = gl@) (1.4: 

2. Henceforth we will consider only the problem of Cauchy-Poisson 
waves with the initial conditions (1.4) and we will assume that for 

t > 0 no external pressure forces act on the fluid (f, I 0 in Expression 
(1.2)). As is known from general theory, it is sufficient to solve the 
problem for the case f(x) E 0. W e will seek a solution of Equation (1.1) 

in the following form: 
03 

cp@, y; t) = 
5 

F1 (m) cosJ&g t @ (z, Y; m) dm (2.1) 

0 

where Fl(m) is an unknown function and @(x, y; m) is a function, harmonic 
within the angle /3, which satisfies the conditions 

acD 
a),,-mm=0 npn y=o, r>O 9 - = 0 on the solid boundary (2.2) aIt 

‘Ihe problem of finding the function @(x, y; m) for the Conditions 
(2.2) has been solved [ 2 1 for the angles /3 = n/2n, where n is an 
integer. For n = 2 this solution has the form 

0 (z, y; m,_e ~~ Icl/,irre--m(x+iu)+ e-V,i~e-~m(x+iv)] (2.3) 

We will choose the function Fl(m) so that &x, y; t), defined by 
Formula (2.11, satisfies the initial Condition (1.4). Substituting (2.1) 
into ( 1.4), we obtain 

Thus, for determining the function Fl(m), a Fredholm integral equation 
of the first kind with the kernel ax, 0; m) is obtained. Its solution 
for arbitrary n has a complicated form [ 4 I. Therefore, we will confine 

our attention to the case n = 2, i.e. to a slope angle of the beach equal 
to 45” (for n = 1 (2.4) becomes the usual Fourier transformation and the 
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problem reduces to the reflection of waves from a vertical beach or to 

the problem of Cauchy-Poisson waves on the surface of an infinitely deep 

fluid). In this case (2.4) has the form 

f F(x) = 5 Ar R,(m)(e-*+ cos mx- sin m,x)dm (2.5) 

0 

where A is for the present an undetermined constant. 

We will show that the kernel of Equation (2.5) is a Fourier kernel. 

For this it is sufficient [4] to establish that it satisfies the func- 

tional equation 

K (s) K (I- s) = 0 (K(+(“,““-‘d’) (2.6) 

Here K is the Mellin transformation of the function +(+). Substitut- 
ing the expression +(x) = l/2 s A(cmr + cos x - sin n) into (2.6), we 

prove to ourselves that this equation is satisfied for the value of the 

constant A = ~/TT~R. Consequently, in this case the Expression (2.5) re- 
presents the generalized Fourier transformation and its inversion has 

the sywunetrical form 

10° 
PI(m)= - \ F(x)(e-mx+cosmx-sinmx)dx 

PI/X0 
(2.7) 

Substituting (2.7) into (2.1), we obtain the solution of the problem 

of Cauchy-Poisson waves (for the angle /3 = 45') 

cp(x, ?A t) = f 

00 

s Jf 
cos "gt [emmx (co9 my + sinmy)+ emY(cos mx- sinmx)] X 

0 

Xr (e-""+ cos mx - sin mx) F (x) dxdm (2.8) 
0 

3. We shall pass on to the consideration of special cases. Let F(x) = 

J6 (x), where 6(n) is the Dirac delta-function. This corresponds to an 

instantaneous impulse in the quantity J which is applied in the neighbor- 

hood of the origin of the coordinate system. Formula (2.3) in this case 

acquires the form 

'p (x, y; t) = ;; 

00 

s 
cos v/Mg t [emmr (cos my,+ sinmy)+ emy(cosmx- sin mx)]dm (3.1) 

Multiplyin; (3.1) by l/g, diff erentiating with respect to t and assum- 

ing y = 0, we obtain the elevation of the free surface 

- 
r (x, 1) = - J$ 7 vrng sin l/mg t(emmx+ cos mx - sin mx)dm 

0 

(3.2) 
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0y the same arguments it is easy to obtain the solution which corre- 
sponds to an initial elevation of the free surface concentrated near the 
origin of the coordinate system. Designating by Q the volume of fluid 
contained between the profile of the initial elevation and the x-axis, 
we obtain expressions for and 

(3.3) 

2Qfico 
'PC? Y; q = - 7c s 

sin V/mg t [e-mr(cos my + sin my)+ emu(cos mz -sin ms)] - 

0 
; 

7j (2, t) = z 7 cos JGzg t (e-““_t co9 mx- sin mx)dm (3.4) 

0 
w 

'Ihe integrals obtained can not be evaluated in elementary functions. 
We will calculate the value of (3.4) at large distances from the origin 
of the coordinate system. Expanding the integrand into a series and 
carrying out the integration, we obtain 

(3.5) 

where w = gt2/2 x. To obtain a formula which describes the folm of the 
surface for the case of an initial impulse, it is necessary to calculate 
the integral (3.1) or (3.2). However, it is easy to see that this can 
also be obtained directly by differentiating (3.5) with respect to t and 
multiplying the expression obtained by J/Qp g. ‘Ihe power series (3.5) 
gives good agreement only for small values of o. An asymptotic expression 
for 7 can be obtained for large o. Evaluating the integral by the method 
of stationary phase, we find 

4. We will consider the problem of Cauchy-Poisson waves arising from 
an initial elevation of the surface at a distance xl from the origin of 
the coordinate system. In this case 

F (2) = QS (cc -- q) 

Using formula (2.8), we obtain an expression for ~(x, t) 

2Q O” r, (x, 1) : -; 
s 

cm I/r,rg 1 (,-"I, + cos )UZ - Sill m.)(,--m~~ + cos r,lLrl--sill rnr,)dw (4.1) 

0 

An analogous formula is obtained for the case of an intial impulse in 
the quantity J applied at the point (x, 0). The integral in (4.1) con- 
verges very slowly. Therefore, for maki;lg calculations with this formula 
it is necessary to use computing machines. 
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T o get an idea of the phenomenon of the origin of the waves and their 

reflection from the sloping beach, a calculation was carried out on the 

computing machine "Arrow" with the aid of Formula (4.1) for values of 

g = 9.81 m/sect and for t = 0.5, 4 and 8 sec. The initial elevation was 

given in the form of a step function equal to zero for x < 1 m and for 

x > 1.1 m and equal to unity for 1 m < x < 1.1 m. 

The results of the caluclation are represented in the form of graphs 

in Fig. 1, where n1 = 777/2Q. An analogous calculation was performed for 
the case of an initial impulse of 

the paraneters. The corresponding 

10 
0 

Fig. 1. 

where n1 = up g54’J. 

the same form for the same values of 

graphs have been constructed in Fig.2, 

Fig. 2. 

We will obtain the asymptotic expression for (4.1) for large values 

of the quantity gt2 and for x < x1. Applying the method of stationary 

phase, we find 

_- 

5. If the slope angle of the beach is small (< 6O according to [2 ] ), 

then shallow wave theory can be applied at not very large distances from 

the origin of the coordinate system. In the work of [2 I there is ob- 

tained the corresponding system of standing waves 

‘p (z, 0; 1) = A cos vmg iJ, (2 1/mr/g) (5.1) 

where q is the slope angle of the beach and J, is the Bessel function of 

zero order. We will construct a more general solution, multiplying (5.1) 

by the arbitrary function Fl(\lm ) and integrating with respect to m 

from 0 to m 
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(5.2) 

Setting t = 0 in (5.21, making the substitution of variables dm= u 
and using the initial condition (1.41, we obtain an integral equation for 

determining F,(o) 

As we see, F(x) is the Hankel transformation of zero order of the 

function F,(o). Using the inversion formula and substituting in (5.2), 

we obtain 

We shall calculate the elevation of the free surface which arises 

under the action of the initial impulse of the quantity J, concentrated 

in the neighborhood of the origin of the coordinate system. From (5.3) 

with F(n) = J8 (x) we find 

(5.4) 

The corresponding formula for the case in which the impulse is applied 

at a distance x1 from the origin of the coordinate system has the form 

It is easy to calculate the displacement of the surface at the origin 

of the coordinate system as a function of time. Assuming n = 0 in (5.5), 

we satisfy ourselves that the formula coincides in form with (5.3) for 

the case considered above. Consequently, the desired dependence is given 

by Formula (5.41, wh ere it is necessary to replace x by 1~~. 

In conclusion I want to express deep gratitude to N.N. hloiseef for 

valuable advice and also to take this opportunity to thank E.P. Porisov 

for assistance in carrying out the computer calculations. 

BIBLIOGRAPHY 

1. Lewy. H., Water waves on sloping beaches. Bulletin of the American 

Mathematical Society Vol. 52, 1946. 



822 B.N. Ruriantscv 

2. Stoker, J. J., Surface waves in water of variable depth. Quarterly of 

Applied Mathenatics Vol. 5. l-54, 1947. 

3. Keldysh, M. V., K zadache ob otrazhenii voln na poverkhnosti tiazhe- 

101 zhidkosti (On the problem of the reflection of waves on the 

surface of a heavy fluid). Tekhn. zanetki TsAGI NO. 52, Issue 2. 

3-4, 1935. 

4. Titchmarsh, E., Vvedenie v teoriiu integralov Fur’e (Introduction to 

the theory of Fourier integrals). OGIZ, Moscow-Leningrad, 1948. 

Translated by R.D.C. 


